Reservoir Computing Based on Iterative Function Systems

Author:

Shimomura Suguru

Abstract

AbstractVarious approaches have been proposed to construct reservoir computing systems. However, the network structure and information processing capacity of these systems are often tied to their individual implementations, which typically become difficult to modify after physical setup. This limitation can hinder performance when the system is required to handle a wide spectrum of prediction tasks. To address this limitation, it is crucial to develop tunable systems that can adapt to a wide range of problem domains. This chapter presents a tunable optical computing method based on the iterative function system (IFS). The tuning capability of IFS provides adjustment of the network structure and optimizes the performance of the optical system. Numerical and experimental results show the tuning capability of the IFS reservoir computing. The relationship between tuning parameters and reservoir properties is discussed. We further investigate the impact of optical feedback on the reservoir properties and present the prediction results.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3