A reference installation based on thermo-gravimetric analysis with mass-spectrometric detection as a part of the state primary standard GET 173

Author:

Medvedevskikh M. Yu.,Krasheninina M. P.,Sergeeva A. S.,Shokhina O. S.

Abstract

The issue of assuring the traceability of the results of water determination in solid and liquid substances and materials is discussed. The stages of development and improvement, as well as composition of the State primary measurement standard of mass fraction and mass (molar) concentration of water in liquid and solid substances and materials (GET 173) are considered. The problems of the limited applicability of GET 173 in case of separation of water with different binding energies and impossibility of conducting qualitative analysis of non-water volatile compounds during heating of substances and materials are revealed. The results regarding upgrading of GET 173 due to incorporation of additional reference installation which implements the methods of thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC) and mass-spectrometry (MS) are presented. The composition and operating principle of the new reference unit are described. An algorithm for estimating the uncertainty of reproducing a unit mass fraction of water using this reference facility is presented and sources of the uncertainty are identified. The results of the experiment on determination of the lower limit of the reproduction range for a unit water mass fraction are presented. We also present the results of comparisons regarding determination of the water mass fraction in crystalline hydrates obtained using the improved State primary standard and high-precision installations of the metrological and leading sectorial research institutes of the European countries. The results of developing a certified reference material of water mass fraction in sodium molybdate dihydrate (Na2MoO4· 2H2O CRM UNIIM 10911–2017 intended for metrological support of measurement instruments and measurement procedures based on thermo-gravimetric method are presented. Additional possibilities which result from the introduction of a new reference installation into the state primary standard of GET 173 are disclosed: identification and the quantification of non-water volatile components, adjustment of drying regimes both in laboratory and process conditions, determination of water content as one of the main impurities in estimating mass fraction of the main component of high-purity substances.

Publisher

TEST-ZL Publishing

Subject

Condensed Matter Physics

Reference17 articles.

1. RF State Standard 8.630–2013. State system for ensuring the uniformity of measurements. State verification schedule for measuring of moisture content of firm and loose materials. — Moscow: Standartinform, 2014. — 12 p. [in Russian].

2. Gorshkov V. V., Koryakov V. I., Medvedevskikh M. Yu., Medvedevskikh S. V. State primary standard of unit of mass fraction and unit of mass concentration of moisture in solid substances and solid fabricated materials / Measur. Tech. 2010. Vol. 53. N 4. P. 386 – 390.

3. Medvedevskikh S. V., Medvedevskikh M. Yu., Karpov Yu. A. General approaches to the estimation of uncertainty in the results of reproducing units of water content in solids and materials / Measur. Tech. 2015. Vol. 58. N 8. P. 926 – 933.

4. Mitchell J., Smith D. Aquametry. Part I. A treatise on methods for the determination of water. — New York: John Wiley & Sons, 1977. — 632 p.

5. Rebinder P. A. Physicochemical mechanics of dispersed structures. — Moscow: Nauka, 1966 — 399 p. [in Russian].

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3