DEPOSITION AND CHARACTERIZATION OF MAGNETRON CO-SPUTTERED InAlN FILM AT DIFFERENT Ar:N2 GAS FLOW RATIOS

Author:

AFZAL NAVEED1,DEVARAJAN MUTHARASU1,IBRAHIM KAMARULAZIZI2

Affiliation:

1. School of Physics, Universiti Sains Malaysia (USM), 11800 USM Pulau Pinang, Malaysia

2. Institute of Nano Optoelectronics Research and Technology, Universiti Sains Malaysia (USM), 11800 USM Pulau Pinang, Malaysia

Abstract

This work presents the influence of changing Ar:N2 gas ratio on the growth and properties of InAlN films. InAlN films were deposited on [Formula: see text]-type Si(111) substrates by using magnetron co-sputtering method in 6:12, 10:10, 12:8 and 12:6 Ar:N2 mixtures at 300[Formula: see text]C. The surface, structural, electrical and optical properties of the deposited films were evaluated at different Ar:N2 ratios. The grain size and film thickness were increased by increasing the Ar flow with respect to N2. Structural characterization by X-ray diffraction (XRD) revealed an improvement in the crystalline quality of the [Formula: see text]-axis-oriented InAlN film by adjusting the Ar:N2 ratio to 12:8, however no diffraction peak corresponding to InAlN was detected at 6:12 Ar:N2 mixture. The surface roughness of InAlN film exhibited an increasing trend whereas the electrical resistivity of the film was decreased by increasing the Ar:N2 ratio. The bandgap of InAlN film was calculated from the optical reflectance spectra and it was found to change by changing the Ar:N2 gas ratio. The analysis of results from this work shows that the InAlN film with improved physical properties can be obtained through reactive magnetron co-sputtering method by adjusting the Ar:N2mixture to 12:8.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3