Artificial Intelligence-Based Fault Diagnosis for Condition Monitoring of Electric Motors

Author:

Sharma Amandeep1ORCID,Mathew Lini1,Chatterji Shantanu1,Goyal Deepam2

Affiliation:

1. Department of Electrical Engineering, National Institute of Technical Teachers Training and Research, Chandigarh, India

2. Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India

Abstract

In the era of globalization, manufacturing industries are facing intense pressure to prevent unexpected breakdowns, reduce maintenance cost and increase plant availability. Induction motors are the most sought-after prime movers in modern-day industries due to their robustness. Recently, research has picked up a fervent pace in the area of fault diagnosis of electrical machines. This paper presents the application of Support Vector Machine (SVM) and Artificial Neural Network (ANN)-based system to diagnose the vibration and Instantaneous Power (IP)-based responses of rolling element bearings and broken rotor bars in an induction motor. The dimensionality of the extracted features was reduced using Principal Component Analysis (PCA) and thereafter the selected features were ranked in order of relevance using the Sequential Floating Forward Selection (SFFS) method for reducing the size of input features and finding the most optimal feature set. A comparative analysis of the effectiveness of SVM and ANN is carried out using statistical parameters extracted from vibration and IP signals. The highest accuracy of 92.5% and 98.2% was achieved for vibration and IP signatures, respectively, using the proposed SFFS-based feature selection technique and ANN classification method. The results reveal that ANN has better performance than SVM and the proposed strategy can be used for automatic recognition of machine faults. The use of this type of intelligent system helps in avoiding unwanted and unplanned system shutdowns due to the failure of the motor.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3