Review of Data Processing Methods Used in Predictive Maintenance for Next Generation Heavy Machinery

Author:

Hassan Ietezaz Ul1,Panduru Krishna1ORCID,Walsh Joseph1ORCID

Affiliation:

1. IMaR Research Centre, Munster Technological University, V92 CX88 Tralee, Ireland

Abstract

Vibration-based condition monitoring plays an important role in maintaining reliable and effective heavy machinery in various sectors. Heavy machinery involves major investments and is frequently subjected to extreme operating conditions. Therefore, prompt fault identification and preventive maintenance are important for reducing costly breakdowns and maintaining operational safety. In this review, we look at different methods of vibration data processing in the context of vibration-based condition monitoring for heavy machinery. We divided primary approaches related to vibration data processing into three categories–signal processing methods, preprocessing-based techniques and artificial intelligence-based methods. We highlight the importance of these methods in improving the reliability and effectiveness of heavy machinery condition monitoring systems, highlighting the importance of precise and automated fault detection systems. To improve machinery performance and operational efficiency, this review aims to provide information on current developments and future directions in vibration-based condition monitoring by addressing issues like imbalanced data and integrating cutting-edge techniques like anomaly detection algorithms.

Funder

Science Foundation Ireland

European Regional Development Fund

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inverse-time protection method of pumped-storage unit vibration;Results in Engineering;2024-09

2. Evaluation Metrics: A Review of Decision Methods for Vibration Based Condition Monitoring;2024 35th Irish Signals and Systems Conference (ISSC);2024-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3