The application of fault diagnosis techniques and monitoring methods in building electrical systems – based on ELM algorithm

Author:

Liu Guanghui

Abstract

The reliability of modern building electrical systems are receiving increasing attention as they become more intelligent and complex. As the majority of building electrical systems use neutral point grounding, earth faults or short circuits can get worse over time and damage both the distribution system and the electrical equipment. To this end, the corresponding three phases and four categories, namely three-phase voltage, three-phase current after fault, three-phase voltage distortion rate, three-phase current distortion rate, a total of 12 dimensional fault feature vectors and 10 fault simulation types, were summarised and extracted in conjunction with the actual operating conditions of the system. Using traditional fault identification ideas and neural network algorithm as reference, a 12-dimensional fault feature vector is used as the model input to construct a building electrical fault diagnosis and detection model based on ELM algorithm. Results showed that the ELM-based model’s classification accuracy for this experimental sample was 97.56 %, its AUC was 0.92, and its RMSE was 0.3521. These figures were higher than the classification accuracy and performance of the BP algorithm and GA-BP algorithm fault diagnosis models, and they also demonstrate better robustness and generalizability. The model also has a 97.27 % correct rate in fault discrimination, while the computation time is only 0.201 s, and its fault identification and diagnosis speed is faster than other algorithmic models. At the same time, this research model has a good fault monitoring accuracy of up to 98.6 % for building electrical systems. The research can provide a more sensitive, accurate and rapid fault monitoring method for the current building electrical system. It also improves the reliability of the building electrical system in a complex environment and achieves better protection of the system. This has a certain significance for the development of the building electrical industry.

Publisher

JVE International Ltd.

Subject

Mechanical Engineering,Instrumentation,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3