A New Current Profile Determination Methodology Incorporating Gating Logic to Minimize the Noise of CPU Chip by 40%

Author:

Laskar Nivedita1,Debnath Suman1,Majumder Alak2ORCID,Bhattacharyya Bidyut Kumar3

Affiliation:

1. Department of Electrical Engineering, National Institute of Technology Agartala, Tripura 799046, India

2. Department of Electronics and Computer Engineering, National Institute of Technology Arunachal Pradesh, Yupia 791112, India

3. Department of Electronics and Communication Engineering, National Institute of Technology Agartala, Tripura 799055, India

Abstract

The present methodology of clock distribution inside high-performance central processing unit chip offers current to ramp linearly or exponentially when the chip comes out of sleep mode to active mode or when the clock starts driving a chip to operate. This linear current ramp leads to power and ground noise due to [Formula: see text]d[Formula: see text]/d[Formula: see text]. In this paper, we have shown that for a given power delivery network (PDN), it is possible to generate a current profile (current versus time), by controlling the current on all the complementary metal oxide semiconductor gates of the clock generation circuits. In our methodology, the time for the chip to reach the maximum saturation current is same when compared with the present linear current ramp methodology. We have also developed a new “optimizer program” to show the existence of a unique single current profile solution, which is different from the present methodology. The proposed method requires understanding of how the minimum value of the power supply voltage (supposed to be always 1[Formula: see text]V for the device) gets changed, when various gates in a clock tree are turned ON at different times ([Formula: see text], parameters of the problem) with different values of current ([Formula: see text], other parameters of the problem). Basically, an ensemble of “[Formula: see text]” number of transistors will be turned ON at time [Formula: see text] while it will pump the total current [Formula: see text]. This understanding generates the derivative function of the minimum noise point with respect to these said parameters, which in turn generates a new set of parameters to optimize the noise point. We have found that this optimizer program works and also converges for the generation of minimum power and ground noise, which is 40% lesser than the conventional approach.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Gating Approach to Alleviate Power and Ground Noise in Silicon Chips;Journal of Circuits, Systems and Computers;2018-04-26

2. Variation aware intuitive clock gating to mitigate on-chip power supply noise;International Journal of Electronics;2018-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3