FPGA Virtualization Mechanism Based on Heterogeneous Zynq Platforms

Author:

Chai Zhilei1ORCID,Liu Wei1,Wu Qin1,He Qunfang2,Chen Wenjie2

Affiliation:

1. School of IoT Engineering, Jiangnan University, 214122, Wuxi, P. R. China

2. MoE Engineering Research Center for Software/Hardware Co-design Technology, East China Normal University, 200062, Shanghai, P. R. China

Abstract

FPGA (Field Programmable Gate Array) has the advantages of parallelism and reconfigurability, therefore, it is widely used in areas such as image processing, robotics and artificial intelligence. However, the development of FPGA currently involves too many hardware details, so it lacks extensibility for different platforms and flexibility for system level management and scheduling. In this paper, we propose an FPGA Virtualization Mechanism (FVM), which divides physical resources into pages (virtual resources). We use the technology of PR (Partial Reconfiguration) and the method of intermediate form to lift the extensibility and performance. We implement FVM in our platform VSC (Vary Super Computer System). Experiment results show that FVM can solve the problem of extensibility and flexibility, with high performance.

Funder

State Key Laboratory of Scientific and Engineering Computing

the Foundation of Shanghai Key Laboratory of Navigation and Location Based Services

the National High Technology Research Development Program of China

Shanghai Natural Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer Artificial Vision Image Processing System Based on FPGA;Lecture Notes on Data Engineering and Communications Technologies;2021-09-27

2. FPGA-Based ROI Encoding for HEVC Video Bitrate Reduction;Journal of Circuits, Systems and Computers;2020-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3