A Program-Aware Fault-Injection Method for Dependability Evaluation Against Soft-Error Using Genetic Algorithm

Author:

Arasteh Bahman1

Affiliation:

1. Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract

Decreasing the scale of transistors and exponential increase in the transistor counts has made the soft-errors as one of the major causes of software failures. Fault injection is a powerful method for dependability assessment of a computer system against soft-errors. A considerable number of randomly injected faults in the current methods and tools are effect-less or equivalent. To overcome this problem and reduce the cost of fault injection, this study presents a software based fault-injection method that accurately evaluates the dependability of a computer system with a limited number fault-injection. Using a genetic algorithm (GA) the most vulnerable executable paths of an input program is identified; then only the basic blocs (BBs) into the identified vulnerable paths are considered as the target of fault injection. The results of fault injections on the set of 8 traditional benchmark-programs show that the proposed method reduces about 20% of effect-less faults by avoiding the injection of faults in the error-derating blocks of a program. Furthermore, the number of injected faults is reduced to 60% of its original size in the random injection. Also, the proposed method provides more stable and accurate results than the random injection.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Programming-level and redundancy-free method for enhancing software reliability against transient errors in hardware;International Journal of Reliability, Quality and Safety Engineering;2021-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3