Affiliation:
1. Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Abstract
Decreasing the scale of transistors and exponential increase in the transistor counts has made the soft-errors as one of the major causes of software failures. Fault injection is a powerful method for dependability assessment of a computer system against soft-errors. A considerable number of randomly injected faults in the current methods and tools are effect-less or equivalent. To overcome this problem and reduce the cost of fault injection, this study presents a software based fault-injection method that accurately evaluates the dependability of a computer system with a limited number fault-injection. Using a genetic algorithm (GA) the most vulnerable executable paths of an input program is identified; then only the basic blocs (BBs) into the identified vulnerable paths are considered as the target of fault injection. The results of fault injections on the set of 8 traditional benchmark-programs show that the proposed method reduces about 20% of effect-less faults by avoiding the injection of faults in the error-derating blocks of a program. Furthermore, the number of injected faults is reduced to 60% of its original size in the random injection. Also, the proposed method provides more stable and accurate results than the random injection.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献