Programming-level and redundancy-free method for enhancing software reliability against transient errors in hardware

Author:

Arasteh Bahman1,Solhi Reza2

Affiliation:

1. Department of Software Engineering, Faculty of Engineering and Natural Science, Istinye University, Istanbul, Turkey

2. Department of Computer Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran

Abstract

Software play remarkable roles in different critical applications. On the other hand, due to the shrinking of transistor size and reduction in supply voltage, radiation-induced transient errors (soft errors) have become an important source of computer systems failure. As the rate of transient hardware faults increases, researchers have investigated software techniques to control these faults. Performance overhead is the main drawback of software-implemented methods like recovery blocks that use technical redundancy. Enhancing the software reliability against soft errors by utilizing inherently error masking (invulnerable) programming structures is the main goal of this study. During the programming phase and at the source code level, programmers can select different storage classes such as automatic, global, static and register for the data into their program without paying attention to their inherent reliability. In this study, the inherent effects of these storage classes on the program reliability are investigated. Extensive series of profiling and fault-injection experiments were performed on the set of benchmark programs implemented with different storage classes. Regarding the results of experiments, we find that the programs implemented with automatic storage classes have inherently higher reliability than the programs with static and register storage classes without performance overhead. This finding enables the programmers to develop highly reliable programs without technical redundancy and performance overhead.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3