Identifying camellia oil adulteration with selected vegetable oils by characteristic near-infrared spectral regions

Author:

Chu Xuan1,Wang Wei1,Li Chunyang2,Zhao Xin1,Jiang Hongzhe1

Affiliation:

1. College of Engineering, China Agricultural University, Beijing 100083, P. R. China

2. Institute of Food Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China

Abstract

In this paper, a methodology based on characteristic spectral bands of near infrared spectroscopy (1000–2500[Formula: see text]nm) and multivariate analysis was proposed to identify camellia oil adulteration with vegetable oils. Sunflower, peanut and corn oils were selected to conduct the test. Pure camellia oil and that adulterated with varying concentrations (1–10% with the gradient of 1%, 10–40% with the gradient of 5%, 40–100% with the gradient of 10%) of each type of the three vegetable oils were prepared, respectively. For each type of adulterated oil, full-spectrum partial least squares partial least squares (PLS) models and synergy interval partial least squares (SI-PLS) models were developed. Parameters of these models were optimized simultaneously by cross-validation. The SI-PLS models were proved to be better than the full-spectrum PLS models. In SI-PLS models, the correlation coefficients of predition set (Rp) were 0.9992, 0.9998 and 0.9999 for adulteration with sunflower oil, peanut oil and corn oil seperately; the corresponding root mean square errors of prediction set (RMSEP) were 1.23, 0.66 and 0.37. Furthermore, a new generic PLS model was built based on the characteristic spectral regions selected from the intervals of the three SI-PLS models to identify the oil adulterants, regardless of the adultrated oil types. The model achieved with Rp[Formula: see text] 0.9988 and RMSEP [Formula: see text] 1.52. These results indicated that the characteristic near infrared spectral regions could determine the level of adulteration in the camellia oil.

Funder

China National Science and Technology Support Program

Gannan Camellia Industry Development and Innovative Center Open Fund

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering,Atomic and Molecular Physics, and Optics,Medicine (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3