Impact of effective mass changes with mole-fraction on the analog/radio frequency benchmarking parameters in junctionless GaxIn1−xAs/GaAs field-effect transistor

Author:

Vadizadeh Mahdi1ORCID,Fallahnejad Mohammad2

Affiliation:

1. Department of Electrical Engineering, Abhar Branch, Islamic Azad University, 4561934367 Abhar, Iran

2. Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, 4561934367 Tehran, Iran

Abstract

In this paper, for the first time, changes in the effective mass (EM) of electron and hole with mole fraction are taken into account for extracting the benchmarking parameters of analog/radio frequency (RF) and high-frequency noise performance of junctionless (JL)-Ga[Formula: see text]In[Formula: see text]As/GaAs via simulation. In the JL-Ga[Formula: see text]In[Formula: see text]As/GaAs structure, considering changes in the effective mass with mole fraction is called a with-EM state, while the JL-Ga[Formula: see text]In[Formula: see text]As/GaAs structure without considering the changes in effective mass with mole fraction is called a without-EM state. The simulation results show that, per [Formula: see text], the maximum transconductance in the with-effective mass (EM) state is [Formula: see text] mS/[Formula: see text]m, which is reduced by 8% compared to the without-EM state. The JL-Ga[Formula: see text]In[Formula: see text]As/GaAs device in the with-EM state has the unity gain cutoff frequency of [Formula: see text] GHz, minimum noise figure of [Formula: see text] db, and available associated gain of [Formula: see text] db. The [Formula: see text] and [Formula: see text] parameters in the with-EM state decreased by 10% and 38%, respectively, compared to the without-EM state. Moreover, [Formula: see text] in the with-EM state increased by 65% compared to the without-EM state. Our simulation results indicated that an increase in electron effective mass with the increased [Formula: see text] can limit the analog/RF frequency and high-frequency noise performance of the JL-Ga[Formula: see text]In[Formula: see text]As/GaAs device.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3