REDUCING CACHE HIERARCHY ENERGY CONSUMPTION BY PREDICTING FORWARDING AND DISABLING ASSOCIATIVE SETS

Author:

CARAZO PABLO1,APOLLONI RUBÉN2,CASTRO FERNANDO3,CHAVER DANIEL3,PINUEL LUIS3,TIRADO FRANCISCO3

Affiliation:

1. Applied Computer Science Department, University Polytechnic of Madrid, Madrid 28031, Spain

2. Area of Computing Systems, National University of San Luis, San Luis, 5700, Argentina

3. ArTeCS Group, University Complutense of Madrid, Madrid 28040, Spain

Abstract

The first level data cache in modern processors has become a major consumer of energy due to its increasing size and high frequency access rate. In order to reduce this high energy consumption, we propose in this paper a straightforward filtering technique based on a highly accurate forwarding predictor. Specifically, a simple structure predicts whether a load instruction will obtain its corresponding data via forwarding from the load-store structure — thus avoiding the data cache access — or if it will be provided by the data cache. This mechanism manages to reduce the data cache energy consumption by an average of 21.5% with a negligible performance penalty of less than 0.1%. Furthermore, in this paper we focus on the cache static energy consumption too by disabling a portion of sets of the L2 associative cache. Overall, when merging both proposals, the combined L1 and L2 total energy consumption is reduced by an average of 29.2% with a performance penalty of just 0.25%.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cellular Automata Based Test Design for Coherence Verification in 3D Caches;Journal of Circuits, Systems and Computers;2019-08

2. Design of a Reliable Cache System for Heterogeneous CMPs;Journal of Circuits, Systems and Computers;2018-08-23

3. ASYNCHRONOUS INSTRUCTION CACHE MEMORY FOR AVERAGE-CASE PERFORMANCE;Journal of Circuits, Systems and Computers;2014-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3