ASYNCHRONOUS INSTRUCTION CACHE MEMORY FOR AVERAGE-CASE PERFORMANCE

Author:

LEE JE-HOON1,CHO HYUN GUG2

Affiliation:

1. Division of Electronics and Information Communication Engineering, Kangwon Nat'l University, 1, Joongang-ro, Samcheok, Gangwon 245-711, Republic of Korea

2. Department of Optometry, Kangwon Nat'l University, 1, Joongang-ro, Samcheok, Gangwon, 245-711, Republic of Korea

Abstract

This paper presents an asynchronous instruction cache memory for average-case performance, rather than worst-case performance. Even though the proposed instruction cache design is based on a fixed delay model, it can achieve high throughput by employing a new memory segmentation technique that divides cache memory cell arrays into multiple memory segments. The conventional bit-line memory segmentation divides a whole memory system into multiple segments so that all memory segments have the same size. On the contrary, we propose a new bit-line segmentation technique for the cache memory which consists of multiple segments but all the memory segments have the same delay bound for themselves. We use the resister-capacitor (R-C) modeling of bit-line delay for content addressable memory–random access memory (CAM–RAM) structure in a cache in order to estimate the total bit-line delay. Then, we decide the number of segments to trade-off between the throughput and complexity of a cache system. We synthesized a 128 KB cache memory consisting of various segments from 1 to 16 using Hynix 0.35-μm CMOS process. From the simulation results, our implementation with dividing factor 4 and 16 can reduce the average cache access time to 28% and 35% when compared to the non-segmented counterpart system. It also shows that our implementation can reduce the average cache access time by 11% and 17% when compared to the bit-line segmented cache that consists of the same number of segments that have the same size.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast In-Memory Key–Value Cache System with RDMA;Journal of Circuits, Systems and Computers;2019-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3