Design of a Reliable Cache System for Heterogeneous CMPs

Author:

Chakraborty Bidesh1ORCID,Dalui Mamata2,Sikdar Biplab K.3

Affiliation:

1. Department of Computer Science and Engineering, Haldia Institute of Technology, Haldia 721657, West Bengal, India

2. Department of Computer Science and Engineering, National Institute of Technology, Durgapur, Durgapur 713209, West Bengal, India

3. Department of Computer Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Shibpur 711103, West Bengal, India

Abstract

The embedded system-on-a-chip (SoC), that integrates heterogeneous processors with variation in coherence protocol, adds complexity in maintaining coherency in the data caches. It further complicates the task of coherence verification in such systems. This work targets effective solution for coherence verification in heterogeneous chip multiprocessors (CMPs) through introduction of highly efficient verification unit. It is developed around the modeling tool of cellular automaton (CA) invented by von Neumann in 1950s. The modular and cascadable structure of CA ensures high scalability and robustness in the proposed design. A CA segment is employed to analyze the states of a data block in different private caches of a heterogeneous processor cluster and to verify inconsistencies, if any, within the cluster. The outcomes of coherence verification for clusters are analyzed by the CA resulted out of augmentation of the CA segments. On the other hand, in this work, we further propose a CA-based coherence protocol processor (PP), which caters the need for determining the state of a data block with high accuracy. The PP designed for the heterogeneous CMPs, while computing the states of za block on every transaction (read/write), can capture defects, if any, and thereby realizes a fault-tolerant PP without introduction of additional hardware logic.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3