64-BIT PIPELINE CARRY LOOKAHEAD ADDER USING ALL-N-TRANSISTOR TSPC LOGICS

Author:

CHENG KUO-HSING1,CHENG SHUN-WEN2,LEE WEN-SHIUAN3

Affiliation:

1. Department of Electrical Engineering, National Central University, Chung-Li, Taoyuan 32001, Taiwan, R.O.C.

2. Department of Electronic Engineering, Far East College, Hsin-Shih, Tainan 74448, Taiwan, R.O.C.

3. R&D Department, Media Scope Technologies Co., Taipei, Taiwan, R.O.C.

Abstract

This paper proposes two improved circuit techniques of True Single-Phase Clocking (TSPC) logic, which called Nonfull Swing TSPC (NSTSPC) and All-N-TSPC (ANTSPC). The voltage of internal node of the NSTSPC is not full swing; it saves partial dynamic power dissipation. And the ANTSPC uses NMOS transistors to replace PMOS transistors, the output loading of Φ-section is therefore reduced and a higher layout density is obtained. Through postlayout simulation comparisons between number of stacked MOS transistors and delay time, and supply voltage vs maximum frequency, the proposed NSTSPC and ANTSPC circuits show better operation speed and power performance than the conventional TSPC circuit. Finally, the new TSPC circuits are applied to a 64-bit hierarchical pipeline Carry Lookahead Adder (CLA), which based on TSMC 0.35 μm CMOS process technology. By using the techniques of NSTSPC and ANTSPC alternately, the 64-bit CLA is successfully implemented as a pipelined structure. The results of post-layout simulation show that the 64-bit CLA can be operated on 1.25 GHz clock frequency and its power/maximal frequency ratio is 151.4 μW/MHz.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Layout parameter analysis in Shannon expansion theorem based on 32 bit adder circuit;Engineering Science and Technology, an International Journal;2017-02

2. Performance Comparison of 64-bit Carry Look-Ahead Adders Using 32nm CMOS Technology;Materials Today: Proceedings;2017

3. Low Power Arithmetic Circuit Design for Multimedia Applications;Advances in Computer and Electrical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3