Co-development of a best practice checklist for mental health data science: A Delphi study

Author:

Kirkham E.J.ORCID,Crompton C.J.ORCID,Iveson M.H.ORCID,Beange I.ORCID,McIntosh A.ORCID,Fletcher-Watson S.ORCID

Abstract

AbstractBackgroundMental health research is commonly affected by difficulties in recruiting and retaining participants, resulting in findings which are based on a sub-sample of those actually living with mental illness. Increasing the use of Big Data for mental health research, especially routinely-collected data, could improve this situation. However, steps to facilitate this must be enacted in collaboration with those who would provide the data - people with mental health conditions.MethodsWe used the Delphi method to create a best practice checklist for mental health data science. Twenty participants with both expertise in data science and personal experience of mental illness worked together over three phases. In the Phase 1, participants rated a list of 63 statements and added any statements or topics that were missing. Statements receiving a mean score of 5 or more (out of 7) were retained. These were then combined with the results of a rapid thematic analysis of participants’ comments to produce a 14-item draft checklist, with each item split into two components: best practice now and best practice in the future. In Phase 2, participants indicated whether or not each item should remain in the checklist, and items that scored more than 50% endorsement were retained. In Phase 3 participants rated their satisfaction with the final checklist.ResultsThe final checklist was made up of 14 “best practice” items, with each item covering best practice now and best practice in the future. At the end of the three phases, 85% of participants were (very) satisfied with the two best practice checklists, with no participants expressing dissatisfaction.ConclusionsIncreased stakeholder involvement is essential at every stage of mental health data science. The checklist produced through this work represents the views of people with experience of mental illness, and it is hoped that it will be used to facilitate trustworthy and innovative research which is inclusive of a wider range of individuals.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3