Public Involvement and Engagement in Big Data Research: Scoping Review (Preprint)

Author:

Teodorowski PiotrORCID,Jones ElisaORCID,Tahir NaheedORCID,Ahmed SaiqaORCID,Rodgers Sarah EORCID,Frith LucyORCID

Abstract

BACKGROUND

The success of big data initiatives depends on public support. Public involvement and engagement could be a way of establishing public support for big data research.

OBJECTIVE

This review aims to synthesize the evidence on public involvement and engagement in big data research.

METHODS

This scoping review mapped the current evidence on public involvement and engagement activities in big data research. We searched 5 electronic databases, followed by additional manual searches of Google Scholar and gray literature. In total, 2 public contributors were involved at all stages of the review.

RESULTS

A total of 53 papers were included in the scoping review. The review showed the ways in which the public could be involved and engaged in big data research. The papers discussed a broad range of involvement activities, who could be involved or engaged, and the importance of the context in which public involvement and engagement occur. The findings show how public involvement, engagement, and consultation could be delivered in big data research. Furthermore, the review provides examples of potential outcomes that were produced by involving and engaging the public in big data research.

CONCLUSIONS

This review provides an overview of the current evidence on public involvement and engagement in big data research. While the evidence is mostly derived from discussion papers, it is still valuable in illustrating how public involvement and engagement in big data research can be implemented and what outcomes they may yield. Further research and evaluation of public involvement and engagement in big data research are needed to better understand how to effectively involve and engage the public in big data research.

INTERNATIONAL REGISTERED REPORT

RR2-https://doi.org/10.1136/bmjopen-2021-050167

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3