Proteomic Network Analysis of Alzheimer’s Disease Cerebrospinal Fluid Reveals Alterations Associated withAPOEε4 Genotype and Atomoxetine Treatment

Author:

Dammer Eric B.ORCID,Shantaraman Anantharaman,Ping Lingyan,Duong Duc M.,Gerasimov Ekaterina S.,Ravindran Suda Parimala,Gudmundsdottir Valborg,Frick Elisabet A.,Gomez Gabriela T.,Walker Keenan A.,Emilsson Valur,Jennings Lori L.,Gudnason Vilmundur,Western Daniel,Cruchaga Carlos,Lah James J.,Wingo Thomas S.,Wingo Aliza P.,Seyfried Nicholas T.,Levey Allan I.,Johnson Erik C.B.ORCID

Abstract

AbstractAlzheimer’s disease (AD) is currently defined at the research level by the aggregation of amyloid-β (Aβ) and tau proteins in brain. While biofluid biomarkers are available to measure Aβ and tau pathology, few biomarkers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here we describe the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aβ and tau pathology in 300 individuals as assessed by two different proteomic technologies—tandem mass tag (TMT) mass spectrometry and SomaScan. Harmonization and integration of both data types allowed for generation of a robust protein co-expression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOEε4) AD risk genotype mapped to oxidant detoxification, mitogen associated protein kinase (MAPK) signaling, neddylation, and mitochondrial biology, and overlapped with a previously described lipoprotein module in serum. Neddylation and oxidant detoxification/MAPK signaling modules had a negative association withAPOEε4 whereas the mitochondrion module had a positive association withAPOEε4. The directions of association were consistent between CSF and blood in two independent longitudinal cohorts, and altered levels of all three modules in blood were associated with dementia over 20 years prior to diagnosis. Dual-proteomic platform analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module—the network module most strongly correlated to cognitive function—were reduced by ATX treatment. Individuals who had more severe glycolytic changes at baseline responded better to ATX. Clustering of individuals based on their CSF proteomic network profiles revealed ten groups that did not cleanly stratify by Aβ and tau status, underscoring the heterogeneity of pathological changes not fully reflected by Aβ and tau. AD biofluid proteomics holds promise for the development of biomarkers that reflect diverse pathologies for use in clinical trials and precision medicine.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3