Abstract
SummaryThe current demand for early intervention, prevention, and treatment of late onset Alzheimer’s disease (LOAD) warrants deeper understanding of the underlying molecular processes which could contribute to biomarker and drug target discovery. Utilizing high-throughput proteomic measurements in serum from a prospective population-based cohort of older adults (n=5,294), we identified 303 unique proteins associated with incident LOAD (median follow-up 12.8 years). Over 40% of these proteins were associated with LOADindependentlyofAPOE-ε4carrier status. These proteins were implicated in neuronal processes and overlapped with protein signatures of LOAD in brain and cerebrospinal fluid. We found 17 proteins which LOAD-association was stronglydependentonAPOE-ε4carrier status. Most of them showed consistent associations with LOAD in cerebrospinal fluid and a third had brain-specific gene expression. Remarkably, four proteins in this group (TBCA, ARL2, S100A13 and IRF6) were downregulated byAPOE-ε4yet upregulated as a consequence of LOAD as determined in a bi-directional Mendelian randomization analysis, reflecting a potential response to the disease onset. Accordingly, the direct association of these proteins to LOAD was reversed uponAPOE-ε4genotype adjustment, a finding which we replicate in an external cohort (n=719). Our findings provide an insight into the dysregulated pathways that may lead to the development and early detection of LOAD, including those both independent and dependent onAPOE-ε4. Importantly, many of the LOAD-associated proteins we find in the circulation have been found to be expressed - and have a direct link with AD - in brain tissue. Thus, the proteins identified here, and their upstream modulating pathways, provide a new source of circulating biomarker and therapeutic target candidates for LOAD.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献