A novel CRISPR-based malaria diagnostic capable of Plasmodium detection, speciation, and drug-resistance genotyping

Author:

Cunningham CH,Hennelly CM,Lin JT,Ubalee R,Boyce RM,Mulogo EM,Hathaway N,Thwai KL,Phanzu F,Kalonji A,Mwandagalirwa K,Tshefu A,Meshnick SR,Juliano JJ,Parr JB

Abstract

ABSTRACTCRISPR-based diagnostics are a new class of highly sensitive and specific assays with multiple applications in infectious disease diagnosis. SHERLOCK, or Specific High-Sensitivity Enzymatic Reporter UnLOCKing, is one such CRISPR-based diagnostic that combines recombinase polymerase pre-amplification, CRISPR-RNA base-pairing, and LwCas13a activity for nucleic acid detection. We developed SHERLOCK assays for malaria capable of detecting all Plasmodium species known to cause malaria in humans and species-specific detection of P. vivax and P. falciparum, the species responsible for the majority of malaria cases worldwide. We validated these assays against parasite genomic DNA and achieved analytical sensitivities ranging from 2.5-18.8 parasites per reaction. We further tested these assays using a diverse panel of 123 clinical samples from the Democratic Republic of the Congo, Uganda, and Thailand and pools of Anopheles mosquitoes from Thailand. When compared to real-time PCR, the P. falciparum assay achieved 94% sensitivity and 94% specificity in clinical samples. In addition, we developed a SHERLOCK assay capable of detecting the dihydropteroate synthetase (dhps) single nucleotide variant A581G associated with P. falciparum sulfadoxine-pyrimethamine resistance. Compared to amplicon-based deep sequencing, the dhps SHERLOCK assay achieved 73% sensitivity and 100% specificity when applied to a panel of 43 clinical samples, with false-negative calls only at lower parasite densities. These novel SHERLOCK assays have potential to spawn a new generation of molecular diagnostics for malaria and demonstrate the versatility of CRISPR-based diagnostic approaches.One-sentence summaryNovel malaria SHERLOCK assays enabled robust detection, speciation, and genotyping of Plasmodium spp. in diverse samples collected in Africa and Asia.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3