Prevotella copri-related effects of a therapeutic food for malnutrition

Author:

Chang Hao-Wei,Lee Evan M.,Wang Yi,Zhou Cyrus,Pruss Kali M.,Henrissat Suzanne,Chen Robert Y.,Kao Clara,Hibberd Matthew C.,Lynn Hannah M.,Webber Daniel M.,Crane Marie,Cheng Jiye,Rodionov Dmitry A.,Arzamasov Aleksandr A.,Castillo Juan J.,Couture Garret,Chen Ye,Balcazo Nikita P.,Lebrilla Carlito B.,Terrapon Nicolas,Henrissat Bernard,Ilkayeva Olga,Muehlbauer Michael J.,Newgard Christopher B.,Mostafa Ishita,Das Subhasish,Mahfuz Mustafa,Osterman Andrei L.ORCID,Barratt Michael J.,Ahmed Tahmeed,Gordon Jeffrey I.

Abstract

Preclinical and clinical studies are providing evidence that the healthy growth of infants and children reflects, in part, healthy development of their gut microbiomes1–5. This process of microbial community assembly and functional maturation is perturbed in children with acute malnutrition. Gnotobiotic animals, colonized with microbial communities from children with severe and moderate acute malnutrition, have been used to develop microbiome-directed complementary food (MDCF) formulations for repairing the microbiomes of these children during the weaning period5. Bangladeshi children with moderate acute malnutrition (MAM) participating in a previously reported 3-month-long randomized controlled clinical study of one such formulation, MDCF-2, exhibited significantly improved weight gain compared to a commonly used nutritional intervention despite the lower caloric density of the MDCF6. Characterizing the ‘metagenome assembled genomes’ (MAGs) of bacterial strains present in the microbiomes of study participants revealed a significant correlation between accelerated ponderal growth and the expression by twoPrevotella copriMAGs of metabolic pathways involved in processing of MDCF-2 glycans1. To provide a direct test of these relationships, we have now performed ‘reverse translation’ experiments using a gnotobiotic mouse model of mother-to-offspring microbiome transmission. Mice were colonized with defined consortia of age- and ponderal growth-associated gut bacterial strains cultured from Bangladeshi infants/children in the study population, with or withoutP. copriisolates resembling the MAGs. By combining analyses of microbial community assembly, gene expression and processing of glycan constituents of MDCF-2 with single nucleus RNA-Seq and mass spectrometric analyses of the intestine, we establish a principal role forP. copriin mediating metabolism of MDCF-2 glycans, characterize its interactions with other consortium members includingBifidobacterium longumsubsp.infantis, and demonstrate the effects ofP. copri-containing consortia in mediating weight gain and modulating the activities of metabolic pathways involved in lipid, amino acid, carbohydrate plus other facets of energy metabolism within epithelial cells positioned at different locations in intestinal crypts and villi. Together, the results provide insights into structure/function relationships between MDCF-2 and members of the gut communities of malnourished children; they also have implications for developing future prebiotic, probiotic and/or synbiotic therapeutics for microbiome restoration in children with already manifest malnutrition, or who are at risk for this pervasive health challenge.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3