Affiliation:
1. South-Western Institute for Astronomy Research, Yunnan University, Chenggong District, Kunming 650091, P. R. China
Abstract
ABSTRACT
The evolution of molecular interstellar clouds is a complex, multiscale process. The power-law density exponent describes the steepness of density profiles, and it has been used to characterize the density structures of the clouds; yet its usage is usually limited to spherically symmetric systems. Importing the Level-Set Method, we develop a new formalism that generates robust maps of a generalized density exponent kρ at every location for complex density distributions. By applying it to high fidelity, high dynamical range map of the Perseus molecular cloud constructed using data from the Herschel and Planck satellites, we find that the density exponent exhibits a surprisingly wide range of variation (−3.5 ≲ kρ ≲ −0.5). Regions at later stages of gravitational collapse are associated with steeper density profiles. Inside a region, gas located in the vicinities of dense structures has very steep density profiles with kρ ≈ −3, which forms because of depletion. This density exponent analysis reveals diverse density structures, forming a coherent picture that gravitational collapse leads to a continued steepening of the density profile. We expect our method to be effective in studying other power law-like density structures, including granular materials and the large-scale structure of the Universe.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献