Affiliation:
1. Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80389;
Abstract
Outflows from accreting, rotating, and magnetized systems are ubiquitous. Protostellar outflows can be observed from radio to X-ray wavelengths in the continuum and a multitude of spectral lines that probe a wide range of physical conditions, chemical phases, radial velocities, and proper motions. Wide-field visual and near-IR data, mid-IR observations from space, and aperture synthesis with centimeter- and millimeterwave interferometers are revolutionizing outflow studies. Many outflows originate in multiple systems and clusters. Although most flows are bipolar and some contain highly collimated jets, others are wide-angle winds, and a few are nearly isotropic and exhibit explosive behavior. Morphologies and velocity fields indicate variations in ejection velocity, mass-loss rate, and in some cases, flow orientation and degree of collimation. These trends indicate that stellar accretion is episodic and often occurs in a complex dynamical environment. Outflow power increases with source luminosity but decreases with evolutionary stage. The youngest outflows are small and best traced by molecules such as CO, SiO, H2O, and H2. Older outflows can grow to parsec scales and are best traced by shock-excited atoms and ions such as hydrogen-recombination lines, [Sii], and [Oii]. Outflows inject momentum and energy into their surroundings and provide an important mechanism in the self-regulation of star formation. However, momentum injection rates remain uncertain with estimates providing lower bounds.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
234 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献