The Effects of Magnetic Fields and Outflow Feedback on the Shape and Evolution of the Density Probability Distribution Function in Turbulent Star-forming Clouds

Author:

Appel Sabrina M.ORCID,Burkhart BlakesleyORCID,Semenov Vadim A.ORCID,Federrath ChristophORCID,Rosen Anna L.ORCID

Abstract

Abstract Using a suite of 3D hydrodynamical simulations of star-forming molecular clouds, we investigate how the density probability distribution function (PDF) changes when including gravity, turbulence, magnetic fields, and protostellar outflows and heating. We find that the density PDF is not lognormal when outflows and self-gravity are considered. Self-gravity produces a power-law tail at high densities, and the inclusion of stellar feedback from protostellar outflows and heating produces significant time-varying deviations from a lognormal distribution at low densities. The simulation with outflows has an excess of diffuse gas compared to the simulations without outflows, exhibits an increased average sonic Mach number, and maintains a slower star formation rate (SFR) over the entire duration of the run. We study the mass transfer between the diffuse gas in the lognormal peak of the PDF, the collapsing gas in the power-law tail, and the stars. We find that the mass fraction in the power-law tail is constant, such that the stars form out of the power-law gas at the same rate at which the gas from the lognormal part replenishes the power law. We find that turbulence does not provide significant support in the dense gas associated with the power-law tail. When including outflows and magnetic fields in addition to driven turbulence, the rate of mass transfer from the lognormal to the power law, and then to the stars, becomes significantly slower, resulting in slower SFRs and longer depletion times.

Funder

Simons Foundation

Alfred P. Sloan Foundation

David and Lucile Packard Foundation

Space Telescope Science Institute

Australian Research Council

NASA Einstein Postdoctoral Fellowship

S.A. is grateful for the support of NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3