The Interplay between the Initial Mass Function and Star Formation Efficiency through Radiative Feedback at High Stellar Surface Densities

Author:

Menon Shyam H.ORCID,Lancaster LachlanORCID,Burkhart BlakesleyORCID,Somerville Rachel S.ORCID,Dekel AvishaiORCID,Krumholz Mark R.ORCID

Abstract

Abstract The observed rest-UV luminosity function at cosmic dawn (z ∼ 8–14) measured by JWST revealed an excess of UV-luminous galaxies relative to many prelaunch theoretical predictions. A high star formation efficiency (SFE) and a top-heavy initial mass function (IMF) are among the mechanisms proposed for explaining this excess. Although a top-heavy IMF has been proposed for its ability to increase the light-to-mass ratio (ΨUV), the resulting enhanced radiative pressure from young stars could decrease the SFE, potentially driving galaxy luminosities back down. In this Letter, we use idealized radiation hydrodynamic simulations of star cluster formation to explore the effects of a top-heavy IMF on the SFE of clouds typical of the high-pressure conditions found at these redshifts. We find that the SFE in star clusters with solar-neighborhood-like dust abundance decreases with increasingly top-heavy IMFs—by ∼20% for an increase of a factor of 4 in ΨUV and by 50% for a factor of ∼10 in ΨUV. However, we find that an expected decrease in the dust-to-gas ratio (∼0.01 × solar) at these redshifts can completely compensate for the enhanced light output. This leads to a (cloud-scale; ∼10 pc) SFE that is ≳70% even for a factor of 10 increase in ΨUV, implying that highly efficient star formation is unavoidable for high surface density and low-metallicity conditions. Our results suggest that a top-heavy IMF, if present, likely coexists with efficient star formation in these galaxies.

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3