Structure of iso-density sets in supersonic isothermal turbulence

Author:

Thiesset F.ORCID,Federrath C.

Abstract

Context. The gas density structure of the cold molecular phase of the interstellar medium is the main controller of star formation. Aims. A theoretical framework is proposed to describe the structural content of the density field in isothermal supersonic turbulence. Methods. It makes use of correlation and structure functions of the phase indicator field defined for different iso-density values. The relations between these two-point statistics and the geometrical features of iso-density sets such as the volume fraction, the surface density, the curvature, and fractal characteristics are provided. An exact scale-by-scale budget equation is further derived revealing the role of the turbulent cascade and dilation on the structural evolution of the density field. Although applicable to many flow situations, this tool is here first invoked for characterising supersonic isothermal turbulence, using data from the currently best-resolved numerical simulation. Results. We show that iso-density sets are surface fractals rather than mass fractals, with dimensions that markedly differ between dilute, neutral, and dense regions. The surface–size relation is established for different iso-density values. We further find that the turbulent cascade of iso-density sets is directed from large towards smaller scales, in agreement with the classical picture that turbulence acts to concentrate more surface into smaller volumes. Intriguingly, there is no range of scales that complies with a constant transfer rate in the cascade, challenging our fundamental understanding of interstellar turbulence. Finally, we recast the virial theorem in a new formulation drawing an explicit relation between the aforementioned geometrical measures and the dynamics of iso-density sets.

Funder

Australian Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3