Tides in clouds: control of star formation by long-range gravitational force

Author:

Li Guang-Xing1ORCID

Affiliation:

1. South-Western Institute for Astronomy Research, Yunnan University , Yunnan, Kunming 650500 , People’s Republic of China

Abstract

ABSTRACT Gravity drives the collapse of molecular clouds through which stars form, yet the exact role of gravity in cloud collapse remains a complex issue. Studies point to a picture where star formation occurs in clusters. In a typical, pc-sized cluster-forming region, the collapse is hierarchical, and the stars should be born from regions of even smaller sizes (${\approx} 0.1\,\rm pc$). The origin of this spatial arrangement remains under investigation. Based on a high-quality surface density map towards the Perseus region, we construct a 3D density structure, compute the gravitational potential, and derive eigenvalues of the tidal tensor (λmin, λmid, λmax, λmin < λmid < λmax), analyse the behaviour of gravity at every location, and reveal its multiple roles in cloud evolution. We find that fragmentation is limited to several isolated, high-density ‘islands’. Surrounding them, is a vast amount of the gas ($75~{{ \rm per\ cent}}$ of the mass, $95~{{ \rm per\ cent}}$ of the volume) that stays under the influence of extensive tides where fragmentation is suppressed. This gas will be transported towards these regions to fuel star formation. The spatial arrangement of regions under different tides explains the hierarchical and localized pattern of star formation inferred from the observations. Tides were first recognized by Newton, yet this is the first time its dominance in cloud evolution has been revealed. We expect this link between cloud density structure and role gravity to be strengthened by future studies, resulting in a clear view of the star formation process.

Funder

NSFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3