Light-responsive transcription factor PpWRKY44 induces anthocyanin accumulation by regulating PpMYB10 expression in pear

Author:

Alabd Ahmed12ORCID,Ahmad Mudassar1,Zhang Xiao1,Gao Yuhao1,Peng Lin1,Zhang Lu1,Ni Junbei1,Bai Songling1,Teng Yuanwen13ORCID

Affiliation:

1. Zhejiang University College of Agriculture and Biotechnology, , Hangzhou, Zhejiang 310058, China

2. Alexandria University Department of Pomology, Faculty of Agriculture, , Alexandria 21545, Egypt

3. Hainan Institute of Zhejiang University , Sanya, Hainan 572025, China

Abstract

Abstract Anthocyanins are a valuable source of antioxidants in the human diet and contribute to fruit coloration. In red-skinned pears, anthocyanin biosynthesis can be induced by light, in which the MYB–bHLH–WDR complex plays a critically important role in transcriptional regulation. However, knowledge of WRKY-mediated transcriptional regulation of light-induced anthocyanin biosynthesis is scarce in red pears. This work identified and functionally characterized a light-inducing WRKY transcription factor, PpWRKY44, in pear. Functional analysis based on overexpressed pear calli showed that PpWRKY44 promoted anthocyanin accumulation. Also, transiently overexpressed PpWRKY44 in pear leaves and fruit peels significantly enhanced the accumulation of anthocyanin, whereas silencing PpWRKY44 in pear fruit peels impaired induction of the accumulation of anthocyanin by light. By chromatin immunoprecipitation and electrophoretic mobility shift assay coupled to a quantitative polymerase chain reaction, we found that PpWRKY44 bound in vivo and in vitro to the PpMYB10 promoter, revealing it as a direct downstream target gene. Moreover, PpWRKY44 was activated by PpBBX18, a light signal transduction pathway component. Our results explained the mechanism mediating the impacts of PpWRKY44 on the transcriptional regulation of anthocyanin accumulation, with potential implications for fine-tuning the fruit peel coloration triggered by light in red pears.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3