Identification of the Genes Coding for Carthamin Synthase, Peroxidase Homologs that Catalyze the Final Enzymatic Step of Red Pigmentation in Safflower (Carthamus tinctorius L.)

Author:

Waki Toshiyuki,Terashita Miho,Fujita Naoki,Fukuda Keishi,Kato Mikiya,Negishi Takashi,Uchida Hiromi,Aoki YuichiORCID,Takahashi SeijiORCID,Nakayama ToruORCID

Abstract

ABSTRACT Carthamin, a dimeric quinochalcone that is sparingly soluble in water, is obtained from the yellow-orange corolla of fully blooming safflower (Carthamus tinctorius L.) florets. Carthamin is a natural red colorant, which has been used worldwide for more than 4500 years and is the major component of Japanese ‘beni’ used for dyeing textiles, in cosmetics and as a food colorant. The biosynthetic pathway of carthamin has long remained uncertain. Previously, carthamin was proposed to be derived from precarthamin (PC), a water-soluble quinochalcone, via a single enzymatic process. In this study, we identified the genes coding for the enzyme responsible for the formation of carthamin from PC, termed ‘carthamin synthase’ (CarS), using enzyme purification and transcriptome analysis. The CarS proteins were purified from the cream-colored corolla of safflower and identified as peroxidase homologs (CtPOD1, CtPOD2 and CtPOD3). The purified enzyme catalyzed the oxidative decarboxylation of PC to produce carthamin using O2, instead of H2O2, as an electron acceptor. In addition, CarS catalyzed the decomposition of carthamin. However, this enzymatic decomposition of carthamin could be circumvented by adsorption of the pigment to cellulose. These CtPOD isozymes were not only expressed in the corolla of the carthamin-producing orange safflower cultivars but were also abundantly expressed in tissues and organs that did not produce carthamin and PC. One CtPOD isozyme, CtPOD2, was localized in the extracellular space. Based on the results obtained, a model for the stable red pigmentation of safflower florets during flower senescence and the traditional ‘beni’ manufacturing process is proposed.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3