Exploration of the Potential Targets and Molecular Mechanism of Carthamus tinctorius L. for Liver Fibrosis Based on Network Pharmacology and Molecular Docking Strategy

Author:

Hu Yu,Lan Yunxi,Ran Qiqi,Gan Qianrong,Tang SongqiORCID,Huang Wei

Abstract

Carthamus tinctorius L. (Honghua, HH) is an herbal medicine and functional food widely used to treat chronic liver diseases, including liver fibrosis. By using network pharmacology and molecular docking experiments, the present study aims to determine the bioactive components, potential targets, and molecular mechanisms of HH for treating liver fibrosis. The components of HH were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and literature, and the SwissTargetPrediction database was used to predict the treatment targets of HH. Genecards and DisGeNET databases contained targets for liver fibrosis, and the STRING database provided networks of protein–protein interactions. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the Database of Annotation, Visualization and Integrated Discovery. The protein–protein interactive network and drug–component–major target–pathway interactive network were visualized and analyzed by Cytoscape software. Finally, Autodock Vina and Discovery Studio software were used for molecular docking Validation. A total of 23 candidate bioactive compounds with 187 treatment targets of HH were acquired from the databases and literature. A total of 121 overlapping targets between HH and liver fibrosis were found to provide the molecular basis for HH on liver fibrosis. Quercetin, beta carotene, and lignan were identified as key components with targeting to ESR1, PIK3CA, and MTOR. HH is engaged in the intervention of various signaling cascades associated with liver fibrosis, such as PI3K/AKT/mTOR pathway, MAPK pathway, and PPAR pathway. In conclusion, HH treats liver fibrosis through multi-component, multi-target, and multi-pathway mechanisms.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3