Reconciling multiple connectivity scores for drug repurposing

Author:

Samart Kewalin1,Tuyishime Phoebe2,Krishnan Arjun3,Ravi Janani4

Affiliation:

1. Computational Mathematics, and Computational Math, Science & Engineering at Michigan State University, East Lansing, MI, USA

2. College of Agriculture and Natural Resources at Michigan State University, East Lansing, MI, USA

3. Departments of Computational Math, Science & Engineering, and Biochemistry & Molecular Biology at Michigan State University, East Lansing, MI, USA

4. Pathobiology and Diagnostic Investigation at Michigan State University, East Lansing, MI, USA

Abstract

Abstract The basis of several recent methods for drug repurposing is the key principle that an efficacious drug will reverse the disease molecular ‘signature’ with minimal side effects. This principle was defined and popularized by the influential ‘connectivity map’ study in 2006 regarding reversal relationships between disease- and drug-induced gene expression profiles, quantified by a disease-drug ‘connectivity score.’ Over the past 15 years, several studies have proposed variations in calculating connectivity scores toward improving accuracy and robustness in light of massive growth in reference drug profiles. However, these variations have been formulated inconsistently using various notations and terminologies even though they are based on a common set of conceptual and statistical ideas. Therefore, we present a systematic reconciliation of multiple disease-drug similarity metrics ($ES$, $css$, $Sum$, $Cosine$, $XSum$, $XCor$, $XSpe$, $XCos$, $EWCos$) and connectivity scores ($CS$, $RGES$, $NCS$, $WCS$, $Tau$, $CSS$, $EMUDRA$) by defining them using consistent notation and terminology. In addition to providing clarity and deeper insights, this coherent definition of connectivity scores and their relationships provides a unified scheme that newer methods can adopt, enabling the computational drug-development community to compare and investigate different approaches easily. To facilitate the continuous and transparent integration of newer methods, this article will be available as a live document (https://jravilab.github.io/connectivity_scores) coupled with a GitHub repository (https://github.com/jravilab/connectivity_scores) that any researcher can build on and push changes to.

Funder

US National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3