Combinatorial prediction of therapeutic perturbations using causally-inspired neural networks

Author:

Gonzalez Guadalupe,Herath Isuru,Veselkov Kirill,Bronstein Michael,Zitnik MarinkaORCID

Abstract

As an alternative to target-driven drug discovery, phenotype-driven approaches identify compounds that counteract the overall disease effects by analyzing phenotypic signatures. Our study introduces a novel approach to this field, aiming to expand the search space for new therapeutic agents. We introduce PDGrapher, a causally-inspired graph neural network model designed to predict arbitrary perturbagens – sets of therapeutic targets – capable of reversing disease effects. Unlike existing methods that learn responses to perturbations, PDGraphersolves the inverse problem, which is to infer the perturbagens necessary to achieve a specific response – i.e., directly predicting perturbagens by learning which perturbations elicit a desired response. Experiments across eight datasets of genetic and chemical perturbations show that PDGraphersuccessfully predicted effective perturbagens in up to 9% additional test samples and ranked therapeutic targets up to 35% higher than competing methods. A key innovation of PDGrapheris its direct prediction capability, which contrasts with the indirect, computationally intensive models traditionally used in phenotype-driven drug discovery that only predict changes in phenotypes due to perturbations. The direct approach enables PDGrapherto train up to 30 times faster, representing a significant leap in efficiency. Our results suggest that PDGraphercan advance phenotype-driven drug discovery, offering a fast and comprehensive approach to identifying therapeutically useful perturbations.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3