Optimizing in silico drug discovery: simulation of connected differential expression signatures and applications to benchmarking

Author:

Gonzalez Gomez Catalina123456ORCID,Rosa-Calatrava Manuel1234578,Fouret Julien123456ORCID

Affiliation:

1. CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon , 14 Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-15 69007 Lyon, Rhône-Alpes , France

2. International Associated Laboratory RespiVir France—Canada , Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec 69008 Lyon, , Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2 Québec , Canada

3. Université Claude Bernard Lyon 1 , Centre de Recherche en Infectiologie, Faculté de Médecine RTH Laennec 69008 Lyon, , Université de Lyon, INSERM, CNRS, ENS de Lyon, France, Centre Hospitalier Universitaire de Québec - Université Laval, QC G1V 4G2 Québec , Canada

4. Nexomis , Faculté de Médecine RTH Laennec, , Université de Lyon, 7 Rue Guillaume Paradin, 69008 Lyon, Rhône-Alpes , France

5. Université Claude Bernard Lyon 1 , Faculté de Médecine RTH Laennec, , Université de Lyon, 7 Rue Guillaume Paradin, 69008 Lyon, Rhône-Alpes , France

6. Signia Therapeutics , 60 Avenue Rockefeller, 69008 Lyon, Rhône-Alpes , France

7. VirNext , Faculté de Médecine RTH Laennec, , 7 Rue Guillaume Paradin, 69008 Lyon, Rhône-Alpes , France

8. Université Claude Bernard Lyon 1, Université de Lyon , Faculté de Médecine RTH Laennec, , 7 Rue Guillaume Paradin, 69008 Lyon, Rhône-Alpes , France

Abstract

Abstract Background We present a novel simulation method for generating connected differential expression signatures. Traditional methods have struggled with the lack of reliable benchmarking data and biases in drug–disease pair labeling, limiting the rigorous benchmarking of connectivity-based approaches. Objective Our aim is to develop a simulation method based on a statistical framework that allows for adjustable levels of parametrization, especially the connectivity, to generate a pair of interconnected differential signatures. This could help to address the issue of benchmarking data availability for connectivity-based drug repurposing approaches. Methods We first detailed the simulation process and how it reflected real biological variability and the interconnectedness of gene expression signatures. Then, we generated several datasets to enable the evaluation of different existing algorithms that compare differential expression signatures, providing insights into their performance and limitations. Results Our findings demonstrate the ability of our simulation to produce realistic data, as evidenced by correlation analyses and the log2 fold-change distribution of deregulated genes. Benchmarking reveals that methods like extreme cosine similarity and Pearson correlation outperform others in identifying connected signatures. Conclusion Overall, our method provides a reliable tool for simulating differential expression signatures. The data simulated by our tool encompass a wide spectrum of possibilities to challenge and evaluate existing methods to estimate connectivity scores. This may represent a critical gap in connectivity-based drug repurposing research because reliable benchmarking data are essential for assessing and advancing in the development of new algorithms. The simulation tool is available as a R package (General Public License (GPL) license) at https://github.com/cgonzalez-gomez/cosimu.

Funder

French National Research and Technology Agency

CIFRE

H2020 EIC Accelerator Instrument

European Commission

Publisher

Oxford University Press (OUP)

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3