The maximum accretion rate of a protoplanet: how fast can runaway be?

Author:

Choksi Nick1ORCID,Chiang Eugene12,Fung Jeffrey3,Zhu Zhaohuan45ORCID

Affiliation:

1. Department of Astronomy, Theoretical Astrophysics Center, and Center for Integrative Planetary Science, University of California , Berkeley, CA 94720 , USA

2. Department of Earth and Planetary Science, University of California , Berkeley, CA 94720 , USA

3. Department of Physics and Astronomy, Clemson University , Clemson, SC 29634 , USA

4. Department of Physics and Astronomy, University of Nevada , Las Vegas, NV 89154 , USA

5. Nevada Center for Astrophysics, University of Nevada , Las Vegas, NV 89154 , USA

Abstract

ABSTRACT The hunt is on for dozens of protoplanets hypothesized to reside in protoplanetary discs with imaged gaps. How bright these planets are, and what they will grow to become, depend on their accretion rates, which may be in the runaway regime. Using 3D global simulations, we calculate maximum gas accretion rates for planet masses Mp from 1$\, \mathrm{ M}_{{\oplus }}$ to $10\, \mathrm{ M}_{\rm J}$. When the planet is small enough that its sphere of influence is fully embedded in the disc, with a Bondi radius rBondi smaller than the disc’s scale height Hp – such planets have thermal mass parameters qth ≡ (Mp/M⋆)/(Hp/Rp)3 ≲ 0.3, for host stellar mass M⋆ and orbital radius Rp – the maximum accretion rate follows a Bondi scaling, with $\max \dot{M}_{\rm p} \propto \rho _{\rm g}M_{\rm p}^2 / (H_{\rm p}/R_{\rm p})^3$ for ambient disc density ρg. For more massive planets with 0.3 ≲ qth ≲ 10, the Hill sphere replaces the Bondi sphere as the gravitational sphere of influence, and $\max \dot{M}_{\rm p} \propto \rho _{\rm g}M_{\rm p}^1$, with no dependence on Hp/Rp. In the strongly superthermal limit when qth ≳ 10, the Hill sphere pops well out of the disc, and $\max \dot{M}_{\rm p} \propto \rho _{\rm g}M_{\rm p}^{2/3} (H_{\rm p}/R_{\rm p})^1$. Applied to the two confirmed protoplanets PDS 70b and c, our numerically calibrated maximum accretion rates imply that their Jupiter-like masses may increase by up to a factor of ∼2 before their parent disc dissipates.

Funder

NSF

AST

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3