Envelopes of embedded super-Earths – II. Three-dimensional isothermal simulations

Author:

Béthune William1,Rafikov Roman R12

Affiliation:

1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK

2. Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

Abstract

ABSTRACT Massive planetary cores embedded in protoplanetary discs are believed to accrete extended atmospheres, providing a pathway to forming gas giants and gas-rich super-Earths. The properties of these atmospheres strongly depend on the nature of the coupling between the atmosphere and the surrounding disc. We examine the formation of gaseous envelopes around massive planetary cores via three-dimensional inviscid and isothermal hydrodynamic simulations. We focus the changes in the envelope properties as the core mass varies from low (subthermal) to high (superthermal) values, a regime relevant to close-in super-Earths. We show that global envelope properties such as the amount of rotational support or turbulent mixing are mostly sensitive to the ratio of the Bondi radius of the core to its physical size. High-mass cores are fed by supersonic inflows arriving along the polar axis and shocking on the densest parts of the envelope, driving turbulence, and mass accretion. Gas flows out of the core’s Hill sphere in the equatorial plane, describing a global mass circulation through the envelope. The shell of shocked gas atop the core surface delimits regions of slow (inside) and fast (outside) material recycling by gas from the surrounding disc. While recycling hinders the runaway growth towards gas giants, the inner regions of protoplanetary atmospheres, more immune to mixing, may remain bound to the planet.

Funder

Isaac Newton Trust

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3