Spin of protoplanets generated by pebble accretion: Influences of protoplanet-induced gas flow

Author:

Takaoka Kohsuke,Kuwahara Ayumu,Ida Shigeru,Kurokawa Hiroyuki

Abstract

Context. In the pebble accretion model, protoplanets accrete millimeter-to-centimeter-sized particles (pebbles). When a protoplanet grows, a dense gas envelope forms around it. The envelope affects accretion of pebbles and, in particular, the spin angular momentum transfer at the collision to the planet. Aims. We aim to investigate the spin state of a protoplanet during the pebble accretion influenced by the gas flow in the gravitational potential of the protoplanet and how it depends on the planetary mass, the headwind speed, the distance from the host star, and the pebble size. Methods. We performed nonisothermal three-dimensional hydrodynamical simulations in a local frame to obtain the gas flow around the planet. We then numerically integrated three-dimensional orbits of pebbles under the obtained gas flow. Finally, assuming uniform spatial distribution of incoming pebbles, we calculated net spin by summing up specific angular momentum that individual pebbles transfer to the protoplanet at impacts. Results. We find that a protoplanet with the envelope acquires prograde net spin rotation regardless of the planetary mass, the pebble size, and the headwind speed of the gas. This is because accreting pebbles are dragged by the envelope that commonly has prograde rotation. As the planetary mass or orbital radius increases, the envelope is thicker and the prograde rotation is faster, resulting in faster net prograde spin. When the dimensionless thermal mass of the planet, m = RBondi/H, where RBondi and H are the Bondi radius and the disk gas scale height, is larger than a certain critical mass (m ≳ 0.3 at 0.1 au or m ≳ 0.1 at 1 au), the spin rotation exceeds the breakup one. Conclusions. The predicted spin frequency reaches the breakup one at the planetary mass miso,rot ~ 0.1 (a/1 au)−1/2 (where a is the orbital radius), suggesting that the protoplanet cannot grow beyond miso,rot. It is consistent with the Earth’s current mass and could help the formation of the Moon with a giant impact on a fast-spinning proto-Earth.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3