Concurrent Accretion and Migration of Giant Planets in Their Natal Disks with Consistent Accretion Torque

Author:

Li 李 Ya-Ping 亚平ORCID,Chen 陈 Yi-Xian 逸贤ORCID,Lin 林 Douglas N. C. 潮ORCID

Abstract

Abstract Migration commonly occurs during the epoch of planet formation. For emerging gas giant planets, it proceeds concurrently with their growth through the accretion of gas from their natal protoplanetary disks. A similar migration process should also be applied to the stellar-mass black holes embedded in active galactic nucleus disks. In this work, we perform high-resolution 3D and 2D numerical hydrodynamical simulations to study the migration dynamics for accreting embedded objects over the disk viscous timescales in a self-consistent manner. We find that an accreting planet embedded in a predominantly viscous disk has a tendency to migrate outward, in contrast to the inward orbital decay of nonaccreting planets. 3D and 2D simulations find the consistent outward migration results for the accreting planets. Under this circumstance, the accreting planet’s outward migration is mainly due to the asymmetric spiral arms feeding from the global disk into the Hill radius. This is analogous to the unsaturated corotation torque although the imbalance is due to material accretion within the libration timescale rather than diffusion onto the inner disk. In a disk with a relatively small viscosity, the accreting planets clear deep gaps near their orbits. The tendency of inward migration is recovered, albeit with suppressed rates. By performing a parameter survey with a range of disks’ viscosity, we find that the transition from outward to inward migration occurs with the effective viscous efficiency factor α ∼ 0.003 for Jupiter-mass planets.

Funder

MOST ∣ National Natural Science Foundation of China

STCSM ∣ Natural Science Foundation of Shanghai Municipality

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Streaming Torque in Dust–Gas Coupled Protoplanetary Disks;The Astrophysical Journal;2024-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3