Breaking Giant Chains: Early-stage Instabilities in Long-period Giant Planet Systems

Author:

Nagpal VighneshORCID,Goldberg MaxORCID,Batygin KonstantinORCID

Abstract

Abstract Orbital evolution is a critical process that sculpts planetary systems, particularly during their early stages where planet–disk interactions are expected to lead to the formation of resonant chains. Despite the theoretically expected prominence of such configurations, they are scarcely observed among long-period giant exoplanets. This disparity suggests an evolutionary sequence wherein giant planet systems originate in compact multiresonant configurations, but subsequently become unstable, eventually relaxing to wider orbits—a phenomenon mirrored in our own solar system’s early history. In this work, we present a suite of N-body simulations that model the instability-driven evolution of giant planet systems, originating from resonant initial conditions, through phases of disk dispersal and beyond. By comparing the period ratio and normalized angular momentum distributions of our synthetic aggregate of systems with the observational census of long-period Jovian planets, we derive constraints on the expected rate of orbital migration, the efficiency of gas-driven eccentricity damping, and typical initial multiplicity. Our findings reveal a distinct inclination toward densely packed initial conditions, weak damping, and high giant planet multiplicities. Furthermore, our models indicate that resonant chain origins do not facilitate the formation of Hot Jupiters via the coplanar high-eccentricity pathway at rates high enough to explain their observed prevalence.

Funder

Caltech Summer Undergraduate Research Fellowship

David and Lucile Packard Foundation

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3