Eccentric debris belts reveal the dynamical history of the companion exoplanet

Author:

Rodet Laetitia1ORCID,Lai Dong1

Affiliation:

1. Cornell Center for Astrophysics and Planetary Science, Department of Astronomy, Cornell University , Ithaca, NY 14853, USA

Abstract

ABSTRACT In recent years, a number of eccentric debris belts have been observed in extrasolar systems. The most common explanation for their shape is the presence of a nearby eccentric planetary companion. The gravitational perturbation from such a companion would induce periodic eccentricity variations on the planetesimals in the belt, with a range of precession frequencies. The overall expected shape is an eccentric belt with a finite minimum width. However, several observed eccentric debris discs have been found to exhibit a narrower width than the theoretical expectation. In this paper, we study two mechanisms that can produce this small width: (i) the protoplanetary disc can interact with the planet and/or the planetesimals, slowly driving the eccentricity of the former and damping the eccentricities of the latter; and (ii) the companion planet could have gained its eccentricity stochastically, through planet–planet scatterings. We show that under appropriate conditions, both of these scenarios offer a plausible way to reduce the minimum width of an eccentric belt exterior to a perturbing planet. However, the effects of protoplanetary discs are diminished at large separations (a > 10 au) due to the scarcity of gas and the limited disc lifetime. These findings suggest that one can use the shape and width of debris discs to shed light on the evolution of extrasolar systems, constraining the protoplanetary disc properties and the prevalence of planet–planet scatterings. Further observations of debris-harbouring systems could confirm whether thin debris belts are a common occurrence, or the results of rare initial conditions or evolutionary processes.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3