Using debris disk observations to infer substellar companions orbiting within or outside a parent planetesimal belt

Author:

Stuber T. A.ORCID,Löhne T.ORCID,Wolf S.ORCID

Abstract

Context. Alongside a debris disk, substellar companions often exist in the same system. The companions influence the dust dynamics via their gravitational potential. Aims. We analyze whether the effects of secular perturbations, originating from a substellar companion, on the dust dynamics can be investigated with spatially resolved observations. Methods. We numerically simulated the collisional evolution of narrow and eccentric cold planetesimal belts around a star of spectral type A3 V that are secularly perturbed by a substellar companion that orbits either closer to or farther from the star than the belt. Our model requires a perturber on an eccentric orbit (e ≳ 0.3) that is both far from and more massive than the collisionally dominated belt around a luminous central star. Based on the resulting spatial dust distributions, we simulated spatially resolved maps of their surface brightness in the K, N, and Q bands and at wavelengths of 70 µm and 1300 µm. Results. Assuming a nearby debris disk seen face-on, we find that the surface brightness distribution varies significantly with observing wavelength, for example between the N and Q band. This can be explained by the varying relative contribution of the emission of the smallest grains near the blowout limit. The orbits of both the small grains that form the halo and the large grains close to the parent belt precess due to the secular perturbations induced by a substellar companion orbiting inward of the belt. The halo, being composed of older grains, trails the belt. The magnitude of the trailing decreases with increasing perturber mass and hence with increasing strength of the perturbations. We recovered this trend in synthetic maps of surface brightness by fitting ellipses to lines of constant brightness. Systems with an outer perturber do not show a uniform halo precession since the orbits of small grains are strongly altered. We identified features of the brightness distributions suitable for distinguishing between systems with a potentially detectable inner or outer perturber, especially with a combined observation with JWST/MIRI in the Q band tracing small grain emission and with ALMA at millimeter wavelengths tracing the position of the parent planetesimal belt.

Funder

DFG

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RZ Piscium Hosts a Compact and Highly Perturbed Debris Disk;The Astrophysical Journal;2023-12-01

2. The effect of sculpting planets on the steepness of debris-disc inner edges;Monthly Notices of the Royal Astronomical Society;2023-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3