Characterizing the morphology of the debris disk around the low-mass star GSC 07396-00759

Author:

Adam C.ORCID,Olofsson J.,van Holstein R. G.,Bayo A.,Milli J.,Boccaletti A.,Kral Q.,Ginski C.,Henning Th.,Montesinos M.,Pawellek N.,Zurlo A.,Langlois M.,Delboulbé A.,Pavlov A.,Ramos J.,Weber L.,Wildi F.,Rigal F.,Sauvage J.-F.

Abstract

Context. Debris disks have commonly been studied around intermediate-mass stars. Their intense radiation fields are believed to efficiently remove the small dust grains that are constantly replenished by collisions. For lower-mass central objects, in particular M stars, the dust removal mechanism needs to be further investigated given the much weaker radiation field produced by these objects. Aims. We present new observations of the nearly edge-on disk around the pre-main-sequence M-type star GSC 07396-00759, taken with VLT/SPHERE IRDIS in dual-beam polarimetric imaging mode, with the aim to better understand the morphology of the disk, its dust properties, and the star-disk interaction via the stellar mass-loss rate. Methods. We model the polarimetric observations to characterize the location and properties of the dust grains using the Henyey–Greenstein approximation of the polarized phase function. We use the estimated phase function to evaluate the strength of the stellar winds. Results. We find that the polarized light observations are best described by an extended and highly inclined disk (i ≈ 84.3 ° ± 0.3) with a dust distribution centered at a radius r0 ≈ 107 ± 2 au. Our modeling suggests an anisotropic scattering factor g ≈ 0.6 to best reproduce the polarized phase function S12. We also find that the phase function is reasonably well reproduced by small micron-sized dust grains with sizes s > 0.3μm. We discuss some of the caveats of the approach, mainly that our model probably does not fully recover the semimajor axis of the disk and that we cannot readily determine all dust properties due to a degeneracy between the grain size and the porosity. Conclusions. Even though the radius of the disk may be overestimated, our best-fit model not only reproduces the observations well but is also consistent with previous published data obtained in total intensity. Similarly to previous studies of debris disks, we suggest that using a given scattering theory might not be sufficient to fully explain key aspects, such as the shape of the phase function or the dust grain size. Taking into consideration the aforementioned caveats, we find that the average mass-loss rate of GSC 07396-00759 can be up to 500 times stronger than that of the Sun, supporting the idea that stellar winds from low-mass stars can evacuate small dust grains in an efficient way.

Funder

ANID, – Millennium Science Initiative Program –

FONDECYT

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3