In situ scattering of warm Jupiters and implications for dynamical histories

Author:

Anderson Kassandra R1ORCID,Lai Dong12,Pu Bonan1

Affiliation:

1. Cornell Center for Astrophysics and Planetary Science, Department of Astronomy, Cornell University, Ithaca, NY 14853, USA

2. Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

ABSTRACT Many warm Jupiters (WJs) have substantial eccentricities, which are linked to their formation and migration histories. This paper explores eccentricity excitation of WJs due to planet–planet scattering, beginning with three to four planets in unstable orbits, with the innermost planet placed in the range (0.1−1) au. Such a setup is consistent with either in situ formation or arrival at sub-au orbits due to disc migration. Most previous N-body experiments have focused on ‘cold’ Jupiters at several au, where scattering results in planet ejections, efficiently exciting the eccentricities of surviving planets. In contrast, scattering at sub-au distances results in a mixture of collisions and ejections, and the final eccentricities of surviving planets are unclear. We conduct scattering experiments for a range of planet masses and initial spacings, including the effect of general relativistic apsidal precession, and systematically catalogue the scattering outcomes and properties of surviving planets. A comparable number of one-planet and two-planet systems are produced. Two-planet systems arise exclusively through planet–planet collisions, and tend to have low eccentricities/mutual inclinations and compact configurations. One-planet systems arise through a combination of ejections and collisions, resulting in higher eccentricities. The observed eccentricity distribution of solitary WJs (lacking detection of a giant planet companion) is consistent with roughly $60 {{\ \rm per\ cent}}$ of the systems having undergone in situ scattering, and the remaining experiencing a quiescent history.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3