Long-term Evolution of Warps in Debris Disks—Application to the Gyr-old System HD 202628

Author:

Brady Madison T.ORCID,Faramaz-Gorka VirginieORCID,Bryden GeoffreyORCID,Ertel SteveORCID

Abstract

Abstract We present the results of N-body simulations meant to reproduce the long-term effects of mutually inclined exoplanets on debris disks, using the HD 202628 system as a proxy. HD 202628 is a Gyr-old solar-type star that possesses a directly observable, narrow debris ring with a clearly defined inner edge and nonzero eccentricity, hinting at the existence of a sculpting exoplanet. The eccentric nature of the disk leads us to examine the effect on it over Gyr timescales from an eccentric and inclined planet, placed on its orbit through scattering processes. We find that, in systems with dynamical timescales akin to that of HD 202628, a planetary companion is capable of completely tilting the debris disk. This tilt is preserved over the Gyr age of the system. Simulated observations of our models show that an exoplanet around HD 202628 with an inclination misalignment ≳10° would cause the disk to be observably diffuse and broad, which is inconsistent with Atacama Large Millimeter Array (ALMA) observations. With these observations, we conclude that, if there is an exoplanet shaping this disk, it likely had a mutual inclination of less than 5° with the primordial disk. The conclusions of this work can be applied either to debris disks appearing as narrow rings (e.g., Fomalhaut and HR 4796) or to disks that are vertically thick at ALMA wavelengths (e.g., HD 110058).

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3