Modelling dark matter halo spin using observations and simulations: application to UGC 5288

Author:

Ansar Sioree12ORCID,Kataria Sandeep Kumar34ORCID,Das Mousumi1ORCID

Affiliation:

1. Indian Institute of Astrophysics , Bangalore 560034 , India

2. Pondicherry University , R.V. Nagar, Puducherry 605014 , India

3. Department of Astronomy, School of Physics and Astronomy, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240 , China

4. Key Laboratory for Particle Astrophysics and Cosmology (MOE) / Shanghai Key Laboratory for Particle Physics and Cosmology , Shanghai 200240 , China

Abstract

ABSTRACT Dark matter (DM) halo properties are extensively studied in cosmological simulations but are very challenging to estimate from observations. The DM halo density profile of observed galaxies is modelled using multiple probes that trace the DM potential. However, the angular momentum distribution of DM halos is still a subject of debate. In this study, we investigate a method for estimating the halo spin and halo concentration of low surface brightness (LSB), gas-rich dwarf barred galaxy UGC 5288, by forward modelling disc properties derived from observations – stellar and gas surface densities, disc scalelength, H i rotation curve, bar length, and bar ellipticity. We combine semi-analytical techniques, N-body/SPH, and cosmological simulations to model the DM halo of UGC 5288 with both a cuspy Hernquist profile and a flat-core pseudo-isothermal profile. We find that the best match with observations is a pseudo-isothermal halo model with a core radius of rc = 0.23 kpc and halo spin of λ = 0.08 at the virial radius. Although our findings are consistent with previous core radius estimates of the halo density profile of UGC 5288, as well as with the halo spin profiles of similar mass analogues of UGC 5288 in the high-resolution cosmological-magneto-hydrodynamical simulation TNG50, there still remain some uncertainties as we are limited in our knowledge of the formation history of the galaxy. Additionally, we find that the inner halo spin (r < 10 kpc) in barred galaxies is different from the unbarred ones, and the halo spin shows weak correlations with bar properties.

Funder

Science and Engineering Research Board

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3