Importance of Initial Condition on Bar Secular Evolution: Role of Halo Angular Momentum Distribution Discontinuity

Author:

Kataria Sandeep KumarORCID,Shen JuntaiORCID

Abstract

Abstract The dark matter halo properties, for example, mass, spin, and concentration, play a significant role in the formation and evolution of bars in disk galaxies. This study highlights the importance of a new parameter: the dark matter halo angular momentum distribution in the disk’s central region. We experiment with N-body galaxy models having a disk and dark matter similar to Milky Way–type galaxies. In these models, we vary the discontinuity of the angular momentum distribution of the halo (the total spin is the same for all models). Our N-body experiments suggest that bar forms in all models after a few Gyr of disk evolution. However, in the secular evolution of the bar, as we evolve these models until 9.78 Gyr, the bar gains its strength in the model with the most continuous halo angular momentum distribution, and the bar loses strength for the most discontinuous halo angular momentum distribution. The secular evolution of the bar suggests that box/peanut/x-shaped bulges similar to those found in the Milky Way disk should be more pronounced in halos with continuous halo angular momentum distributions. This study demonstrates the importance of the initial condition setup of galaxy systems, namely the discontinuity in the dark matter halo angular momentum distribution for a given density distribution, on the bar secular evolution in the disk galaxy simulations. Further, this study helps reconcile the conflicting results of bar secular evolution in a high-spinning halo of the recent literature.

Funder

Juntai Shen

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3