Stellar angular momentum of disk galaxies at z  ≈  0.7 in the MAGIC survey

Author:

Mercier W.ORCID,Epinat B.ORCID,Contini T.,Krajnović D.ORCID,Ciesla L.ORCID,Lemaux B. C.ORCID,Abril-Melgarejo V.ORCID,Boogaard L.ORCID,Pelliccia D.ORCID

Abstract

Aims. At intermediate redshift, galaxy groups and clusters are thought to impact galaxy properties such as their angular momentum. We investigate whether the environment has an impact on the galaxies’ stellar angular momentum and identify underlying driving physical mechanisms. Methods. We derived robust estimates of the stellar angular momentum using Hubble Space Telescope (HST) images combined with spatially resolved ionised gas kinematics from the Multi-Unit Spectroscopic Explorer (MUSE) for a sample of ∼200 galaxies in groups and in the field at z ∼ 0.7 drawn from the MAGIC survey. Using various environmental tracers, we study the position of the galaxies in the angular momentum–stellar mass (Fall) relation as a function of environment. Results. We measured a 0.12 dex (2σ significant) depletion of stellar angular momentum for low-mass galaxies (M < 1010 M) located in groups with respect to the field. Massive galaxies located in dense environments have less angular momentum than expected from the low-mass Fall relation but, without a comparable field sample, we cannot infer whether this effect is mass or environmentally driven. Furthermore, these massive galaxies are found in the central parts of the structures and have low systemic velocities. The observed depletion of angular momentum at low stellar mass does not appear linked with the strength of the over-density around the galaxies but it is strongly correlated with (i) the systemic velocity of the galaxies normalised by the dispersion of their host group and (ii) their ionised gas velocity dispersion. Conclusions. Galaxies in groups appear depleted in angular momentum, especially at low stellar mass. Our results suggest that this depletion might be induced by physical mechanisms that scale with the systemic velocity of the galaxies (e.g., stripping or merging) and that such a mechanism might be responsible for enhancing the velocity dispersion of the gas as galaxies lose angular momentum.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3