Lightning-induced chemistry on tidally-locked Earth-like exoplanets

Author:

Braam Marrick123ORCID,Palmer Paul I12,Decin Leen3,Ridgway Robert J4ORCID,Zamyatina Maria4ORCID,Mayne Nathan J4,Sergeev Denis E4,Abraham N Luke56

Affiliation:

1. School of GeoSciences, University of Edinburgh , Edinburgh, EH9 3FF, UK

2. Centre for Exoplanet Science, University of Edinburgh , Edinburgh, EH9 3FD, UK

3. Institute of Astronomy , KU Leuven, B-3001 Leuven, Belgium

4. Department of Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter , Exeter, EX4 4QL, UK

5. Yusuf Hamied Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, UK

6. National Centre for Atmospheric Science, Yusuf Hamied Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, UK

Abstract

ABSTRACT Determining the habitability and interpreting atmospheric spectra of exoplanets requires understanding their atmospheric physics and chemistry. We use a 3-D coupled climate-chemistry model, the Met Office Unified Model with the UK Chemistry and Aerosols framework, to study the emergence of lightning and its chemical impact on tidally-locked Earth-like exoplanets. We simulate the atmosphere of Proxima Centauri b orbiting in the Habitable Zone of its M-dwarf star, but the results apply to similar M-dwarf orbiting planets. Our chemical network includes the Chapman ozone reactions and hydrogen oxide (HOx = H + OH + HO2) and nitrogen oxide (NOx = NO + NO2) catalytic cycles. We find that photochemistry driven by stellar radiation (177–850 nm) supports a global ozone layer between 20–50 km. We parametrize lightning flashes as a function of cloud-top height and the resulting production of nitric oxide (NO) from the thermal decomposition of N2 and O2. Rapid dayside convection over and around the substellar point results in lightning flash rates of up to 0.16 flashes km−2 yr−1, enriching the dayside atmosphere below altitudes of 20 km in NOx. Changes in dayside ozone are determined mainly by UV irradiance and the HOx catalytic cycle. ∼45 per cent of the planetary dayside surface remains at habitable temperatures (Tsurf > 273.15K), and the ozone layer reduces surface UV radiation levels to 15 per cent. Dayside–nightside thermal gradients result in strong winds that subsequently advect NOx towards the nightside, where the absence of photochemistry allows NOx chemistry to involve reservoir species. Our study also emphasizes the need for accurate UV stellar spectra to understand the atmospheric chemistry of exoplanets.

Funder

Horizon 2020

Science and Technology Facilities Council

KU Leuven

FWO

University of Exeter

Leverhulme Trust

UK Research and Innovation

Natural Environment Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3