Lenses In VoicE (LIVE): searching for strong gravitational lenses in the VOICE@VST survey using convolutional neural networks

Author:

Gentile Fabrizio123ORCID,Tortora Crescenzo4ORCID,Covone Giovanni345ORCID,Koopmans Léon V E6,Spiniello Chiara47ORCID,Fan Zuhui8,Li Rui9,Liu Dezi8ORCID,Napolitano Nicola R39ORCID,Vaccari Mattia1011ORCID,Fu Liping12ORCID

Affiliation:

1. Department of Physics and Astronomy (DIFA), University of Bologna, Via Gobetti 93/2, I-40129 Bologna, Italy

2. INAF – Osservatorio di Astrofisica e Scienza dello Spazio, via Gobetti 93/3, I-40129 Bologna, Italy

3. Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II, Compl. Univ. Monte S. Angelo, I-80126 Napoli, Italy

4. INAF – Osservatorio Astronomico di Capodimonte, Salita Moiariello, 16, I-80131 Napoli, Italy

5. INFN, Sezione di Napoli, C.U. Monte S. Angelo, Via Cinthia, I-80126 Napoli, Italy

6. Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700 AV Groningen, The Netherlands

7. Sub-Dep. of Astrophysics, Dep. of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK

8. South-Western Institute for Astronomy Research, Yunnan University, Kunming 650500, China

9. School of Physics and Astronomy, Sun Yat-sen University Zhuhai Campus, Daxue Road 2, 519082-Tangjia, Zhuhai, Guangdong, China

10. Inter-University Institute for Data Intensive Astronomy,Department of Physics and Astronomy, University of the Western Cape, Robert Sobukwe Road, 7535 Bellville, Cape Town, South Africa

11. INAF – Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna, Italy

12. The Shanghai Key Lab for Astrophysics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China

Abstract

ABSTRACT We present a sample of 16 likely strong gravitational lenses identified in the VST Optical Imaging of the CDFS and ES1 fields (VOICE survey) using convolutional neural networks (CNNs). We train two different CNNs on composite images produced by superimposing simulated gravitational arcs on real Luminous Red Galaxies observed in VOICE. Specifically, the first CNN is trained on single-band images and more easily identifies systems with large Einstein radii, while the second one, trained on composite RGB images, is more accurate in retrieving systems with smaller Einstein radii. We apply both networks to real data from the VOICE survey, taking advantage of the high limiting magnitude (26.1 in the r band) and low PSF FWHM (0.8 arcsec in the r band) of this deep survey. We analyse ∼21 200 images with magr < 21.5, identifying 257 lens candidates. To retrieve a high-confidence sample and to assess the accuracy of our technique, nine of the authors perform a visual inspection. Roughly 75 per cent of the systems are classified as likely lenses by at least one of the authors. Finally, we assemble the LIVE sample (Lenses In VoicE) composed by the 16 systems passing the chosen grading threshold. Three of these candidates show likely lensing features when observed by the Hubble Space Telescope. This work represents a further confirmation of the ability of CNNs to inspect large samples of galaxies searching for gravitational lenses. These algorithms will be crucial to exploit the full scientific potential of forthcoming surveys with the Euclid satellite and the Vera Rubin Observatory.

Funder

Hintze Family Charitable Foundation

MAECI

National Research Foundation

NSFC

STCSM

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3