Total and dark mass from observations of galaxy centers with machine learning

Author:

Wu SiruiORCID,Napolitano Nicola R.ORCID,Tortora CrescenzoORCID,von Marttens RodrigoORCID,Casarini LucianoORCID,Li RuiORCID,Lin WeipengORCID

Abstract

Context. The galaxy total mass inside the effective radius is a proxy of the galaxy dark matter content and the star formation efficiency. As such, it encodes important information on the dark matter and baryonic physics. Aims. Total central masses can be inferred via galaxy dynamics or gravitational lensing, but these methods have limitations. We propose a novel approach based on machine learning to make predictions on total and dark matter content using simple observables from imaging and spectroscopic surveys. Methods. We used catalogs of multiband photometry, sizes, stellar mass, kinematic measurements (features), and dark matter (targets) of simulated galaxies from the Illustris-TNG100 hydrodynamical simulation to train a Mass Estimate machine Learning Algorithm (MELA) based on random forests. Results. We separated the simulated sample into passive early-type galaxies (ETGs), both normal and dwarf, and active late-type galaxies (LTGs) and showed that the mass estimator can accurately predict the galaxy dark masses inside the effective radius in all samples. We finally tested the mass estimator against the central mass estimates of a series of low-redshift (z ≲ 0.1) datasets, including SPIDER, MaNGA/DynPop, and SAMI dwarf galaxies, derived with standard dynamical methods based on the Jeans equations. We find that MELA predictions are fully consistent with the total dynamical mass of the real samples of ETGs, LTGs, and dwarf galaxies. Conclusions. MELA learns from hydro-simulations how to predict the dark and total mass content of galaxies, provided that the real galaxy samples overlap with the training sample or show similar scaling relations in the feature and target parameter space. In this case, dynamical masses are reproduced within 0.30 dex (∼2σ), with a limited fraction of outliers and almost no bias. This is independent of the sophistication of the kinematical data collected (fiber vs. 3D spectroscopy) and the dynamical analysis adopted (radial vs. axisymmetric Jeans equations, virial theorem). This makes MELA a powerful alternative to predict the mass of galaxies of massive stage IV survey datasets using basic data, such as aperture photometry, stellar masses, fiber spectroscopy, and sizes. We finally discuss how to generalize these results to account for the variance of cosmological parameters and baryon physics using a more extensive variety of simulations and the further option of reverse engineering this approach and using model-free dark matter measurements (e.g., via strong lensing), plus visual observables, to predict the cosmology and the galaxy formation model.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3